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Abstract
The fractional Aharonov–Bohm oscillation (FABO) of one-dimensional (1D) quantum rings
with two electrons has been studied. The analysis is based on the separability of the
Hamiltonian into collective and internal motions. The inherent nodal structures of the internal
states have been clarified; thereby these states can be classified. Some relations among them
have been found. Based on the study, the evolution of the period and amplitudes of the FABO
against the magnetic field B can be exactly and analytically described. Furthermore, an
additional ‘rule of selection’ imposed on the dipole transition of the ground state has been
found. Consequently, the photon energies emitted (absorbed) during the transition have only
two choices. The energy difference of these two choices appears as a new kind of oscillation
that matches the oscillation of the persistent current exactly. A number of analytical expressions
relating the observable and dynamic parameters have been found. These equalities are helpful
in the experimental determination of relevant physical quantities. The 1D model is a good
approximation for the 2D rings with very narrow width. Quantitative comparison of these two
models has been made.

1. Introduction

Quantum rings containing only a few electrons can now be
fabricated in laboratories [1, 2]. When a magnetic field B
is applied, people observed [2–4, 13] interesting physical
phenomena, e.g., Aharonov–Bohm oscillation (ABO) and
fractional ABO (FABO) of the ground state energy Eo and
persistent current Jo. In the theoretical aspect, a number of
calculations based on exact diagonalization [5–8], local-spin-
density approximation [9, 10] and the diffusion Monte Carlo
method [11] have been performed. These calculations can
in general reproduce the experimental data. For example, in
the calculation of a four-electron ring [6, 11], the period of
oscillation �0/4 found in experiments was recovered (�0 =
hc/e is the flux quantum). In addition to the oscillations in Eo

and Jo, the optical property has also been studied [16–20].
Due to the progress of techniques, very narrow quantum

rings can be fabricated. When the electrons are confined
strictly inside these rings, the two degrees of freedom normal

1 Author to whom any correspondence should be addressed.

to the circular motion surrounding the ring are very difficult to
be excited. As an example, it is reminded that the excitation
energy of a particle in a deep square well is very high if the
width of the well is very narrow. Therefore, the two degrees of
freedom can be considered as ‘frozen’. And the very narrow
rings can be considered as one-dimensional (1D). Whether
a two-dimensional ring with a harmonic-like confinement
∝ α(r − ro)

2 is close to a 1D ring has been studied in [21],
where α measures how thin the ring would be. When α � 20, it
was found that the low-lying spectra of the two model are close
to each other as shown in figures 3(a) and (b) of [21]. A similar
evaluation on the wavefunctions has been made in [24], where
the low-lying states are found not to contain radial excitation.
And [24] also shows that their radial distribution is very thin
if α is large as expected. These evaluations reveal that the 1D
ring is a good approximation for very narrow rings, the thinner
the ring, the better the approximation. Thus the study of the
1D model is meaningful.

Although there are many literatures dedicated to the
study of 1D rings, a study in an analytical way is scarce.
An important feature of 1D rings is the separability of
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the Hamiltonian. This feature would facilitate greatly the
theoretical analysis because the internal motion can be thereby
separated. The characters of the internal states have also been
scarcely studied. The scope of this paper is limited to the
narrow rings containing two electrons (2-e) and threaded by
a magnetic field (perpendicular to the plane of the ring) under
the 1D model. The first aim is to find out the character of the
internal states, to classify them and to make clear the relations
among them. Based on the internal states, the period of the
FABO and its variation can be described analytically as shown
below. The second aim is to study the relation between the
dipole transitions and the persistent current. This is a topic
that has not yet been studied before. For 2-e narrow rings, it
was found in this paper that the photons emitted (absorbed)
by the ground state during the dipole transition have only
two choices of energy (accordingly the dipole radiation has
only two frequencies). Furthermore, it was found that the
energy difference of the two choices is exactly equal to h Jo

where h is the Planck’s constant. In other words the energy
difference appears as an oscillation which matches exactly the
oscillation of Jo in accord with the variation of the strength
of the magnetic field. Numerical calculation and analytical
analysis are reported as follows.

2. Hamiltonian

We consider a 1D ring with radius R containing two electrons
lying on the X–Y plane, the Hamiltonian reads

H = T + V12 + HZeeman

T =
N∑

j=1

G

(
−i

∂

∂θ j
+�

)2

, G = h̄2

2m∗ R2

(1)

where m∗ is the effective mass, θ j is the azimuthal angle of
the j th electron, � is equal to πR2 B/�0, B is a magnetic
field goes through and perpendicular to the X–Y plane, V12

is the e–e Coulomb interaction, HZeeman = −SZμ� is the
well-known Zeeman energy, SZ is the Z -component of the
total spin S, μ is equal to g∗μB

π R2�0
and is the Bohr magneton

and g∗ is the effective g-factor. The interaction is adjusted
as V12 = e2/(2ε

√
d2 + R2 sin2((θ1 − θ2)/2)), where ε is the

dielectric constant and the parameter d is introduced to account
for the effect of finite width of the ring [7].

A set of basis functions φk1k2 = ei(k1θ1+k2θ2)/2π is
introduced to diagonalize the Hamiltonian. The k1 and k2

must be integers to assure the periodicity and the total orbital
angular momentum L = k1 + k2 is conserved. φk1k2 must be
further (anti-)symmetrized when S = 0(1). More than two
thousand basis functions are adopted so that relevant solutions
are sufficiently accurate (having at least six effective digits).

3. Separability and related consequence

3.1. Separability of the eigenenergies and eigenstates

Let θC = (θ2 + θ1)/2, and ϕ = θ2 − θ1. Then the Hamiltonian
can be separated as

H = Hcoll + Hint (2)

where

Hcoll = 1

2
G

(
−i

∂

∂θC
+ 2�

)2

+ HZeeman and

Hint = 2G

(
−i

∂

∂ϕ

)2

+ V12.

They are for the collective and internal motions, respectively.
The separability is a well-known feature [5, 14, 15]. Due

to the separability, each eigenenergy E can be exactly divided
as a sum of three terms

E = 1
2 G(L + 2�)2 + Eint − SZμ� (3)

where the first term is the kinetic energy of collective motion,
Eint is the internal energy and the last term is the Zeeman
energy.

On the other hand, since the basis function is separable
and can be rewritten as

φk1k2 = 1

2π
eiLθC ei 1

2 (k2−k1)ϕ (4)

the spatial part of each eigenstate 
 with the good quantum
number L is strictly separable as 
 = 1√

2π
eiLθCψint. The first

part of
 describes the collective motion, while the second part
ψint is a superposition of ei 1

2 (k2−k1)ϕ and is a normalized internal
state depending only on ϕ. In particular, neither Eint nor ψint

depends on B (or �).

3.2. Classification of ψint

The period of the internal states as shown in equation (4)
depends on (k2 − k1)ϕ/2. When L is even (odd), (k2 − k1)/2
is an integer (half-integer) and the period of ϕ is 2π (4π).
Therefore, the periodicity of ψint have two choices depending
on (−1)L . Together with the two choices in S, there are totally
four types of internal states. These types can be labelled by
((−1)L , S) = (1, 0), (−1, 0), (−1, 1) and (1, 1), or simply by
a, b, c and d , respectively. The internal states of type a are
denoted as ψa , ψa∗ , . . . and the associated internal energies as
Ea < Ea∗, . . . and so on. The features of these four types are
given below.

3.3. Persistent current

A noticeable outcome of the separability is that the persistent
current J can be written in an analytical form. Let J1 be the
current of particle e1. The current is defined based on the
conservation of matter and it reads as in [5]

J1 = 1

2
g

∫
dθ2

[

∗

(
− i

∂

∂θ1
+�

)

 + c.c.

]
(5)

where g = h̄/(m∗ R2).
Since J1 does not depend on the azimuthal angle θ1, J1 is

equal to 1
2π

∫
J1 dθ1. Thus the total current J = J1 + J2 is

J = 1

4π
g

∫
dθ1dθ2

[

∗

(
− i

∂

∂θ1
− i

∂

∂θ2
+ 2�

)

 + c.c.

]
.

(6)
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When the arguments are changed to θC and ϕ, due to ∂
∂θ1

+
∂
∂θ2

= ∂
∂θC

and the separability of 
 , the integration over θC

and ϕ can be performed analytically. Thus we have

J = g(L + 2�)/2π. (7)

This expression of J , together with equation (3), tells us
transparently that the (F)ABO of the ground state energy Eo

and the persistent current Jo match with each other exactly.
They contain the same factor (L + 2�). Therefore they are
governed by the same mechanism, namely, the transition of Lo

in accord with the variation of �. In particular, Eo and Jo are
related to each other directly as

Eo = m∗(πR Jo)
2 + Eint − SZμ�.

3.4. Dipole transition

A lower state may jump to a higher state by absorbing a photon
via the dipole transition, or vice versa. Let the initial and
final states be denoted as 
(i) and 
(f), respectively, with
angular momenta L(i) and L(f). For dipole transitions, only
L(f) = L(i)± 1 is allowed. The photon energy h̄ω of the dipole
transition is equal to the energy difference of the states. The
probability of dipole transition reads [22]

P(f)
(i),± = 2e2

3h̄
(ω±/c)3 R2|A(f)(i),±|2 (8)

where the additional subscript ± is used to distinguish the two
cases L(f) = L(i) ± 1, (f) and (i) denote the final and initial
states, respectively,

A(f)±(i) = 〈
(f)±|e±iθ1 + e±iθ2 |
(i)〉. (9)

Since e±iθ1 + e±iθ2 = 2e±iθC cos(ϕ/2) and the eigenstates
are separable, the above equation can be rewritten as

A(f)±(i) = δL (f),L (i)±12〈ψ(f)±int | cos(ϕ/2)|ψ(i)int 〉. (10)

This equation implies that not only the collective motion
would gain (lose) a unit of angular momentum but also the
internal state would undergo a change caused by the operator
2 cos(ϕ/2) during the dipole transition. This formula together
with the knowledge on the internal states would facilitate the
following analysis.

4. Numerical results and analysis

Numerical calculation has been performed with the parameters
m∗ = 0.063me, ε = 12.4 (for InGaAs) and d = 0.02R.
The units meV, nm, T and �0 are used. Accordingly, G =
604.8/R2 and μ = 33.53/R2. Related eigenenergies and
eigenstates are obtained after the diagonalization.

The low-lying spectrum is plotted in figure 1. Since the
ground state energy would have the factor |L +2�| minimized
(refer to equation (3)), its angular momentum Lo would jump
step by step in accord with the variation of �. This is clearly

Figure 1. Low-lying levels of a 2-e ring against� in the FABO
region. The numbers by the curves are −Lo. R = 30 nm is assumed.

Figure 2. Four types of ψint against ϕ, R = 30 nm. The lowest three
of each type is shown. The higher state has more nodes.

(This figure is in colour only in the electronic version)

shown in the figure. And the (F)ABO of the ground state
energy Eo is thereby induced.

The internal energies can be directly extracted from the
eigenenergies. When only low-lying levels are taken into
account (excitation energy<10 meV), only eight internal states
are involved (they generate the whole low-lying spectra). They
are classified into four types and they are just the lowest two of
each type. For example, when R = 30, their energies are listed
in table 1 and their wavefunctions are plotted in figure 2.

Due to the e–e repulsion, a dumb-bell shape (i.e., ϕ =
π ) is advantageous in energy. However, a rotation of this
geometry by π is equivalent to an interchange of particles.
The rotation will create (−1)L and the interchange will create
(−1)S from the wavefunction. Therefore, the equivalence leads

3
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Table 1. The lowest and second lowest internal energies (in meV) of
type a–d , R = 30 nm.

Type a b c d

Eint 2.632 4.268 2.634 4.282
E∗

int 6.406 9.066 6.455 9.194

to a constraint. Accordingly the dumb-bell shape is accessible
only to the states with L + S even (i.e., only to type a and
c). Otherwise, the states would have an inherent node at the
dumb-bell shape and therefore be higher in energy as shown
in table 1, where Ea � Eb, Ec � Ed and Ea ≈ Ec. In
figure 2 the patterns of type a and c are one-to-one similar and
they all have a peak at ϕ = π implying the existence of the
dumb-bell shape. The patterns of type b and d are one-to-one
similar and they all have an inherent node at ϕ = π implying
the prohibition of the dumb-bell shape. It is noticeable that
type b and c are not continuous at ϕ = 0 and 2π due to
their special periodicity. It was found that the internal states
of all the ground states are either ψa or ψc without exceptions
due to their dumb-bell shape accessibility. On the other hand,
the excited internal states will contain more additional nodes
implying a more vigorous internal motion as shown in the
figure. When the dynamic parameters vary in reasonable
ranges, the qualitative features of figure 2 remain the same.

It is noted that Ec ≈ Ea and they are both much lower
than Eb and Ed . If the Zeeman energy is negligible (� is
small), bothψc andψa would have similar chances to appear in
the ground states. Accordingly, Lo of the ground state can be
either odd or even. In this case, the increase of � will lead to a
decrease of Lo step by step, each step by one. This leads to an
oscillation with the period � = 1/2 (due to the factor L + 2�
in equation (3)). Accompanying the even–odd transition of Lo,
the total spin of the ground state So undergoes a singlet–triplet
transition. However when� is larger than a critical value�crit,
only So = 1 states can be the lowest due to the strong Zeeman
effect. Accordingly, Lo must be odd. In this case, when �
varies, Lo jumps each step by two and the period of oscillation
becomes � = 1. The region � < (>)�crit is called the FABO
(ABO) region, where the period is a fraction (an integer).

Examples of the ground state persistent current Jo are
shown in figure 3, where the period of oscillation is exactly
the same as that of Eo.

From the above derivation, we know that the function
cos(ϕ/2) is crucial to the dipole transition. By analysing the
numerical data, we found numerically that

Ñ(cos(ϕ/2)ψa) = ψb + ξa,

Ñ(cos(ϕ/2)ψc) = ψd + ξc

(11)

where Ñ is the operator of normalization, both ξa and ξc are
very small functions and depend on the dynamic parameters
very weakly. For example, when R varies from 30 to 90, the
weights of ξa and ξc vary from 0.0004 to 0.0002. They are
so small that they in fact can be neglected. Since cos(ϕ/2)
contains a node at the dumb-bell shape, it may cause a change
of type. If the initial state belongs to type a (c), the final

Figure 3. The oscillation of the persistent current and the two photon
energies of the ground states against�. The unit of current is
10−5C/R, where C is the velocity of light. In the lowest panel, the
black square (white circle) denotes h̄ω+ (h̄ω−), namely, the energy
associated with Lo to Lo + 1 (Lo − 1) transition.

state must belong to b (d). Since cos(ϕ/2) contains only one
node inside the domain [0, 2π ], it can not cause a serious
excitation. Naturally, if the initial state is ψa (ψc), the final
state should be essentially ψb (ψd ) because the latter has
just one node more. This explains the above approximate
equalities. They provide an additional ‘rule of selection’ for
the dipole transition of the ground state; namely, the transition
of the internal state has only one specified choice. Together
with the two choices L(f) = L(i) ± 1 in collective rotation,
the dipole transition of the ground state concentrates only on
two final states. Accordingly, the related photon has only two
choices of energy

h̄ω± = E(f)± − E(i)
= G 1

2 (1 ± 2(Lo + 2�))+�α (12)

where α = a or c depends on the initial state. �a = Eb − Ea

and �c = Ed − Ec and they are the differences of internal
energies. Evidently, since h̄ω± contains the factor Lo+2�, the
oscillation of h̄ω± matches the oscillation of Eo and Jo exactly
as shown in figure 3. It turns out that �α/G depends on R
very weakly and thus h̄ω± is nearly proportional to R−2. It
implies that a very small ring will have a very large probability
of transition.

5. Analytical description of the Aharonov–Bohm
oscillation

The oscillation in the FABO region is complicated as shown in
figures 1 and 3, where a longer period is followed by a shorter

4
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period and these periods vary with�. However, since we have
the analytical expression of Eo, the variation of the period can
be studied in an analytical way. In figure 1 the abscissa � can
be divided into segments each with a specific Lo. Inside each
segment Eo is given by a piece of a parabolic curve. At the
border of two neighbouring segments the two related Eo are
equal. From the equality and based on equation (3), the right
and left boundaries of a segment can be obtained as

�right(Lo) = (1 − (μ/2G)2)−1[1 − μ(Ec − Ea)/G2 − 2Lo

+ (−1)Lo(2(Ec − Ea)+ μ(Lo − 1/2))/G]/4 (13)

�left(Lo) = (1 − (μ/2G)2)−1[−1 − μ(Ec − Ea)/G2 − 2Lo

− (−1)Lo(2(Ec − Ea)+ μ(Lo + 1/2))/G]/4 (14)

where the flux � is assumed to be positive and Lo � 0 and
�right(Lo) = �left(Lo−1). When� is given, the associated Lo

can be found from the inequality �left(Lo) � � � �right(Lo).
Once the relation between Lo and � is clear, every details
of the FABO can be analytically and exactly explained via
equations (3), (7) and (12).

The length of a segment is just the period of � and it
reads

dLo = �right(Lo)−�left(Lo)

= (1 − (μ/2G)2)−1[1 + (−1)Lo(2(Ec − Ea)

+ μLo)/G]/2. (15)

Equation (15) gives a precise description of the varying period
in the FABO region. In this formula, Ec − Ea is very small
(refer to table 1), � � 0 and Lo � 0. Therefore, when
� increases, the factor (2(Ec − Ea) + μLo) becomes more
negative and accordingly dLo becomes shorter (longer) if Lo

is even (odd). Furthermore, the extremum in each segment
can be found. For example, the maximal current in a segment
is g(Lo + 2�right)/2π and the minimum of the ground state
energy in a segment is Emin = Ec−μ2/8G+μLo/2 (if So = 1)
or just Emin = Ea (if S0 = 0).

When � is small, |Lo| should be small. In this case,
equation (15) leads to dLo ≈ 1/2 as mentioned above.

When � becomes sufficiently large, Lo will become very
negative and the segments with Lo even will disappear due to
their lengths dLo � 0. We can define a critical odd integer Lcrit

so that dLcrit−1 � 0 while dLcrit+1 > 0, thereby the critical flux
separating the FABO and ABO region can be defined as

�crit = �left(Lcrit). (16)

Once � > �crit, Lo remains odd and the system keeps
polarized (S = 1). Let IX be the largest even integer smaller
than −(G + 2(Ec − Ea))/μ. From equation (15), it turns out
that Lcrit = IX + 1. With our parameters, we have Lcrit = −19
and accordingly�crit = 9.003 (refer to figure 1). Both Lcrit and
�crit depend on R very weakly but sensitively on the effective
mass m∗.

In the ABO region (� > �crit), equations (14) and (15)
do not hold. Instead we have �right = −(Lo − 1)/2, �left =
−(Lo + 1)/2 and dLo = 1. Thus the normal ABO recovers.
Evaluated from equation (7), the magnitude of current is from
−g/2π to g/2π (for a comparison, it is from −g/4π to g/4π
for 1-e rings). From equation (12) the photon energies h̄ω+ is
from �c − G/2 to �c + 3G/2. At the same time h̄ω− is from
�c + 3G/2 to �c − G/2.

6. Relations between the photon energies and other
physical quantities

Since the emitted (absorbed) dipole photon of the ground state
has only two frequencies as given in equation (12), we define
�h̄ω = h̄(ω+ − ω−). Due to equation (12) and (7),

�h̄ω = h Jo (17)

where h is the Planck’s constant and Jo is the persistent
current of the ground state. Since Jo is oscillating against
�, this equation shows that �h̄ω is also oscillating against
�. And these two oscillations match with each other exactly.
Since photon energies can be more accurately measured,
equation (17) provides a way to measure the current in high
precision. Incidentally, the above formula is a generalization
of the formula�h̄ω = 2h Jo for 1-e rings.

The maxima of �h̄ω measured in the ABO and FABO
regions, respectively, read

(�h̄ω)
AB
max = 2G (18)

(�h̄ω)
FAB
max = 2G(Lo + 2�right). (19)

Obviously, equation (18) provides a way to determine G and
m∗ can be thereby obtained. Equation (19) can be rewritten as

Ec − Ea = (G − μLo)/2 − (2G − μ)/(4G)(�h̄ω)
FAB
max (20)

it can be used to determine Ec − Ea. Furthermore, we define

�h̄ω = h̄(ω+ + ω−) = G + 2�α. (21)

Once G has been found, equation (21) can be used to determine
�a and �c. Once the internal energies have also been found,
the spectrum can be found via equation (3).

7. Quantitative comparison of the 1D and 2D models

The above discussion is based on the 1D model. Since the
radial excitation in very thin rings is frozen as shown in [24],
therefore the 1D model would be a good approximation.
Nonetheless, it would be more convincing if a quantitative
estimation is made. For this purpose, a 2D model with a square
well U(r) is introduced, where U(r) = 0 if rA � r � rB ,
or U(r) = +∞ otherwise. In addition to the above basis
functions eikθ for the azimuthal motion, a set of radial basis
functions fn(ζ ) is introduced. Where n is an integer � 1,
ζ = π[r − (rB + rA)/2]/(rB − rA), and fn(ζ ) = cos(nζ )
if n is odd, or sin(nζ ) if n is even. They are defined only inside
the domain from rA to rB , and they are zero at the border as
required. In other words, the electrons are strictly confined
in the annular region. Then, the Hamiltonian is diagonalized
with these basis functions. The convergency of the calculated
eigenenergies is fine, four effective figures can be obtained
even the total number of basis functions is not larger than
one thousand. The eigenenergies of two types of states with
different rA and rB are listed in tables 2 and 3. For each
case the excitation energies of the three lowest excited states

5
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Table 2. The excitation energies Ei − E1 (in meV) of the low-lying S = 0 and L = 0 states of a 2D ring with inner and outer radii rA and rB

(in nm). Those from the 1D model with R = (rB + rA)/2 are listed in the fourth and seventh columns for a comparison. B = 0 is assumed.

(rA, rB) (15, 45) (27, 33) 1D(R = 30) (70, 100) (83, 87) 1D(R = 85)

E2 − E1 3.811 3.791 3.774 0.658 0.654 0.654
E3 − E1 9.268 9.696 9.626 1.568 1.562 1.559
E4 − E1 16.294 17.796 17.605 2.750 2.747 2.739

Table 3. The same as table 2 but for the S = 1 and L = 1 states. B = �0/(2πR2) is assumed.

(rA, rB) (15, 45) (27, 33) 1D(R = 30) (70, 100) (83, 87) 1D(R = 85)

E2 − E1 3.977 3.831 3.821 0.658 0.654 0.654
E3 − E1 10.152 9.922 9.894 1.570 1.562 1.561
E4 − E1 18.499 18.479 18.425 2.759 2.748 2.745

Figure 4. Evolution of h Jo (solid line) and �h̄ω (dotted line) against
B for a 2-e ring with ra = 50 and rb = 120 nm.

are given. The absolute energies are not comparable due to
having different energies in radial motion (although not yet
excited). However, the excitation energies associated with the
same average radius (rB + rA)/2 but with different widths
rB −rA are comparable because they are essentially contributed
by the excitation of azimuthal motion. They can compare
directly with those from the above 1D model.

As shown by columns 5–7 of the two tables, in accord
with the decrease of the width, the 2D results tend to the
corresponding 1D results. Even when the ring is small
(columns 2–4), the tendency is still clear.

In addition to the energies, let us evaluate how the other
features of the 1D model are affected by the width. A
noticeable relation arising from the 1D model is the formula
�h̄ω = h Jo. Now we use the above 2D model to calculate
both sides of the formula numerically, where Jo is now the
total angular current. When the width of the ring is broad,�h̄ω

and h Jo both as functions of B are slightly different from each
other as shown in figure 4. However, when the width becomes
smaller, say rb − ra < 30, the two curves overlap. Thus
equation (17) works very well for two-dimensional narrow
rings. Therefore, the 1D model is a good approximation for
very narrow rings.

8. Conclusions

In summary, the 1D ring containing two electrons has been
studied. This model is a good approximation for very narrow
rings.

(i) We have classified the internal states into four types
according to S and (−1)L and their features have been
studied. The wavefunctions of each type have their
specific inherent nodal structure and periodicity. The
inherent nodal structure is imposed by symmetry and
is associated with the prohibition of the dumb-bell
shape. In general, for few-body systems, the inherent
nodal structure is a fundamental character of a quantum
state. These structures provide an objective base for
the classification of states. And the spectra are thereby
decisively affected [12, 23].

(ii) A number of formulae relating the physical quantities have
been established (e.g., the one relating Eo and Jo). Some
relations between the internal states have also been found.
The finding equation (11) behaves as an additional ‘rule of
selection’ imposing on the dipole transition of the ground
state. Consequently, the transition concentrates only on
two final states.

(iii) The finding equation (17) relates the dipole transition to
the persistent current Jo. It implies that the oscillation of
�h̄ω matches Jo exactly. Thus equation (17) provides a
way of precise measurement of the current. Furthermore,
a number of formulae relating the dynamic parameters and
observables have been established.

(iv) The period of the FABO is difficult to be described
because it varies with B . Nonetheless, we have succeeded
to derive an analytical equation (15) to describe the period
exactly.

The discussion in this paper is making use of the
separability of the Hamiltonian and is based on the inherent
nodal structures. Since these two points do not depend on N ,
the above description can be more or less generalized to N-
electron rings. For example, when the narrow ring contains N
electrons, instead of equation (3), the eigenenergy reads

E = 1

N
G(L + N�)2 + Eint − SZμ�. (22)
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Instead of equation (6), the total current becomes

J = 1

4π
g

∫ ∏

i

�dθi

[

∗

(
− i

N∑

j

∂

∂θ j

+ N�

)

 + c.c.

]
. (23)

When the arguments are changed to θC together with the set
of internal degrees of freedom, due to

∑
j
∂
∂θ j

= ∂
∂θC

and
the separability of 
 , the above integration can be performed
analytically. Thus we have a simple analytical form

J = g(L + N�)/2π (24)

which is a generalization of equation (7). For the ground state,
Lo and N� cancel with each other to a great extent. Therefore
the current Jo does not increase with N linearly as one might
suggest.

Instead of equation (17), we have a more general formula

�h̄ω = 2h Jo/N (25)

where �h̄ω is the energy difference of the two photons
absorbed by the ground state during the dipole transition. The
final states here are the two possessing the same internal state
and have L(f) = Lo ± 1. This formula holds, obviously, also
for the reverse process.

Nonetheless, when N � 3, the internal states
are complicated and they deserve to be further studied.
Furthermore, in practice, most rings are not very narrow. How
the results of this paper are affected by the width of the ring
(or in general by the 2D confinement potential) deserves to be
further studied.
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